A Crossover on SAW in random environment

Yuki CHINO

Department of Applied Mathematics，
國立陽明交通大學
National Yang Ming Chiao Tung University（NYCU）

2021 中華民國數學年會
（2021 TMS Annual Meeting）

January 17－18， 2022

Introduction of SAW

Two point function:

$$
\begin{aligned}
G_{p}(x) & =\sum_{n=0}^{\infty} c_{n}(x) p^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{\substack{\omega: o \rightarrow x \\
|\omega|=n}} \prod_{i=1}^{n} D\left(\omega_{i-1}, \omega_{i}\right) \prod_{0 \leq s<t \leq n}\left(1-\delta_{\omega_{s}, \omega_{t}}\right)\right) p^{|\omega|}
\end{aligned}
$$

Susceptibility:

$$
\chi(p)=\sum_{x \in \mathbb{Z}^{d}} G_{p}(x)=\sum_{n=0}^{\infty} c_{n} p^{n}
$$

Connective constant:

$$
\lim _{n \rightarrow \infty}\left(c_{n}\right)^{\frac{1}{n}}=: \mu \in(0, \infty)
$$

Critical point and Asymptotic behaviour of SAW

Fact 1. Critical point:

$$
\chi(p)=\sum_{n=0}^{\infty}\left(\left(c_{n}\right)^{\frac{1}{n}} p\right)^{n} \sim \sum_{n=0}^{\infty}(\mu p)^{n} \Rightarrow p_{c}=\frac{1}{\mu}
$$

Fact 2. Critical exponent: $\chi(p) \asymp \frac{1}{\left(p-p_{c}\right)^{\gamma}}$

$$
\gamma= \begin{cases}1 & d=1 \\ \frac{43}{32} & d=2 \\ 1.162 \ldots & d=3 \\ 1 \text { with } \log \text { corr. } & d=4 \\ 1 & d>4\end{cases}
$$

\triangleright SAW behaves like simple RW when higher dimensions $d>4$
\rightarrow Mean field behaviour of SAW

Motivation for SAW on random conductors

Statistical mechanics
Self-avoiding walk
■ Phase transition

- Critical phenomenon

Want to know
Critical behaviour

- Critical point
- Critical exponent

Disorder system

Random environment: $\boldsymbol{X}=\left\{X_{b}\right\}_{b \subset \mathbb{B}^{d}}$

Motivation

I want to know the effect of the random environment !!

SAW in random environment

Susceptibility ：generating function of $c_{\beta, \boldsymbol{X}}(x ; n)$
$\chi_{h, \beta, \boldsymbol{X}}(x)=\sum_{n=0}^{\infty}\left(\sum_{\omega \in \Omega_{n}(x)} e^{-\beta \sum_{j=1}^{n} X_{b_{j}}}\right) e^{-n h}=\sum_{n=0}^{\infty} c_{\beta, \boldsymbol{X}}(x ; n) e^{-n h}$
－$\Omega_{n}(x)$ ：the set of n－step SAW path from x
－$p=e^{-h}:$ fugacity（ $h \in \mathbb{R}$ ：chemical potential／energy cost）
－$\beta \geq 0$ ：strength of randomness
－ $\boldsymbol{X}=\left(X_{b}\right)$ ：set of random conductors
－attached to each edge／bond
－i．i．d．and bounded
－probability law \mathbb{P}（distributed according to ν ）
－finite moment：$\lambda_{\beta}=\mathbb{E}\left[e^{-\beta X_{b}}\right]<\infty$

Critical point for SAW in random environment

Question
What is the critical point (= radius of convergence)?

1 Define formally

$$
h_{c}^{\mathbf{q}}(\beta, \boldsymbol{X}: x):=\inf \left\{h \in \mathbb{R}: \chi_{h, \beta, \boldsymbol{X}}(x)<\infty\right\}
$$

\simeq Open: Analogy of homogeneous case

$$
h_{c}^{\mathbf{q}}(\beta, \boldsymbol{X}: x)=\lim _{n \rightarrow \infty} \frac{1}{n} \log c_{\beta, \boldsymbol{X}}(x ; n)
$$

Proposition 1

The critical point:

$$
h_{c}^{\mathbf{q}}(\beta, \boldsymbol{X}: x)=\limsup _{n \rightarrow \infty} \frac{1}{n} \log c_{\beta, \boldsymbol{X}}(x ; n)
$$

For $d \geq 1$ and $\beta \geq 0$, the critical point $h_{c}^{\mathrm{q}}(\beta, \boldsymbol{X})$ is almost surely an x-independent constant and

$$
\log \mu-\beta \mathbb{E}\left[X_{b}\right] \leq h_{c}^{\mathrm{q}}(\beta, \boldsymbol{X}) \leq h_{c}^{\mathrm{a}}(\beta)=\log \mu+\mathbb{E}\left[e^{-\beta X_{b}}\right]
$$

- Homogeneous model $\Rightarrow h_{c}=\log \mu$
- $d=1 \quad \Rightarrow \quad h_{c}^{q}(\beta, \boldsymbol{X})=-\beta \mathbb{E}\left[X_{b}\right] \quad\left(c_{\beta, \boldsymbol{X}}(x ; n)=2\right)$
- The 2nd moment estimate:

$$
\Rightarrow \quad h_{c}^{\mathrm{q}}(\beta, \boldsymbol{X}) \leq h_{c}^{\mathrm{a}}(\beta) .
$$

- The fractional moment estimate:

$$
\Rightarrow \quad h_{c}^{\mathrm{q}}(\beta, \boldsymbol{X})<h_{c}^{\mathrm{a}}(\beta) .
$$

Crossover: strong disorder vs weak disorder

β is large \Rightarrow Randomness from the environment affects much

There should exist a threshold β_{c} whether randomness affects or not \Downarrow

Crossover

strong disorder (large β) vs weak disorder (small β)

Conjecture
On \mathbb{Z}^{d}, there exists a $\beta_{c} \geq 0$ such that

$$
h_{c}^{\mathrm{q}}(\beta, \boldsymbol{X})\left\{\begin{array}{llll}
=h_{c}^{\mathrm{a}}(\beta) & \text { if } & \beta<\beta_{c} & \text { (weak disorder) } \\
<h_{c}^{\mathrm{a}}(\beta) & \text { if } & \beta>\beta_{c} & \text { (strong disorder) }
\end{array}\right.
$$

Crossover in \mathbb{Z}^{d}

Let

$$
Z_{n}:=\frac{c_{n}(\beta, \boldsymbol{X})}{\mathbb{E}\left[c_{n}(\beta, \boldsymbol{X})\right]}
$$

Note that

$$
\begin{aligned}
Z_{n} & =\frac{1}{c_{n} \lambda_{\beta}^{n}} \exp \left\{n\left(\frac{1}{n} \log c_{n}(\beta, \boldsymbol{X})\right)\right\} \\
& =\exp \left\{n\left(\frac{1}{n} \log \left(c_{n} \lambda_{\beta}^{n}\right)-\frac{1}{n} \log c_{n}(\beta, \boldsymbol{X})\right)\right\}
\end{aligned}
$$

Observation

If $\lim _{n \rightarrow \infty} Z_{n}(\beta, \boldsymbol{X} ; x)=: Z_{\infty}$ exists, then

$$
\begin{array}{ll}
h_{c}^{\mathrm{q}}(\beta, \boldsymbol{X})<h_{c}^{\mathrm{a}}(\beta) & \Leftrightarrow \quad Z_{\infty}=0 \\
h_{c}^{\mathrm{q}}(\beta, \boldsymbol{X})=h_{c}^{\mathrm{a}}(\beta) & \Leftrightarrow \quad Z_{\infty} \in(0, \infty)
\end{array}
$$

Results and Conjectures on \mathbb{Z}^{d}

Crossover

■ in one dimension, there is no crossover
■ in two dimension, there is no crossover
■ in three dimension, there will be no crossover (Open)
■ in more than four dimensions, there will be crossover (Open)
Z_{n} is related to end-to-end distance.

- Z_{n} is of order 1, the trajectories of SAW in random environment behaves like homogeneous case
- Z_{n} decays exponentially fast in n, each trajectory tends to concentrate in a region where the path obtains favourable conductors/potentials.

On tree: Analogy from directed polymer models

Proposition 2

On Cayley tree structure, Z_{n} is a martingale.

- with memory 1 or $2 \Rightarrow Z_{n}$ is a martingale.
- on $\mathbb{Z}^{d} \quad \Rightarrow \quad Z_{n}$ is a supermartingale.
- By martingale convergence, there exists a limit

$$
\lim _{n \rightarrow \infty} Z_{n}=: Z_{\infty} \quad \in[0, \infty)
$$

- By Kolmogorov's 0-1 law, we have $\mathbb{P}\left(Z_{\infty}=0\right)=0$ or 1

Theorem 2
On d-aray tree, for $d \geq 3$, there exists a $\beta_{c} \geq 0$ such that

$$
h_{c}^{\mathrm{q}}(\beta, \boldsymbol{X})\left\{\begin{array}{llll}
=h_{c}^{\mathrm{a}}(\beta) & \text { if } & \beta<\beta_{c} & \text { (weak disorder) } \\
<h_{c}^{\mathrm{a}}(\beta) & \text { if } \quad \beta>\beta_{c} & \text { (strong disorder) }
\end{array}\right.
$$

感謝大家的聆聽

Thank you very much for your attention

